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NUMERICAL EXPERIMENTS ON THE ONSET OF 
LAYERED CONVECTION IN A NARROW SLOT 
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Abstract-Numerical experiments on the initial formation, growth, and merging of convective layers in 
a density stratified solute solution contained in a narrow slot with steadily applied lateral temperature 
gradient are reported on. At supercritical conditions, the kinetic energy of the layers, once formed, 
steadily increases until viscous interaction leads to the eventual merging of adjacent layers. 

The stability of the initial layer formation is studied. The critical thermal Rayleigh number for neutral 
conditions is determined through numerical experiment in close agreement with previous linear analysis 

and experimental results. 

NOMENCLA~RE 

solute diffisivity; 
thermal diffusivity; 
gravitational accelerating; 
layer height; 
integration region height; 
Jacobian; 
kinetic energy; 
slotwidth; 
fluid Lewis number; 
number of layers observed; 
Ruid Prandtl number; 
thermal Rayleigh number; 
solute Rayleigh number; 
solute concentration; 
time; 
temperature; 
horizontal velocity; 
vertical velocity; 
horizontal cooidinate; 
vertical coordinate. 

Greek symbols 

a, coefhcient of expansion due to T ; 

B1 coefficient of expansion due to S; 
AT, wall temperature increase; 

V, kinetic viscosity; 

Pt fluid density; 

$Y 

initial solute stratification; 
stream function; 

0, vorticity. 

1. INTRODUCTION 

WE ARE interested in investigating the resulting con- 
vection process which occurs when a linearly stratified 
salt solution contained in a tall slot of width L, is 
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exposed to a carefully applied lateral tem~rature 
gradient. It has been previously found that under 
certain conditions, characterized by thermal and solute 
Rayleigh numbers, that the quiescent fluid departs from 
the case of lateral and vertical transport of heat and 
salt due only to conduction and diffusion respectively 
and forms a convecting, layered system. This process 
is part of a general class of two-component diffusion 
phenomena which have been recently reviewed by 
Turner [l]. In our investigation, heat/salt and 
heat/sugar are the diffusing components, having a 
ratio of diffusivities of Le = &@a + 100 and 281 
respectively. 1; this investigation, we are interested in 
pertaining whether finite difference techniques may 
be successfuhy used in investigating the onset and time 
dependent growth of the initial layered system, and in 
determination of the limits, in terms of a thermal 
Rayleigh number, of the initial layered system. 

Steplike structures in temperature and salinity have 
been observed in the Northeast Atlantic [2], the Arctic 
Ocean [3], Antartic Lakes [4], the Indian Ocean [5], 
near Bermuda [6], and at the bottom of the Red Sea [7]. 
Since layered systems produce significant departures 
in the vertical transport of heat and salt, an under- 
standing of these processes is crucial in studying the 
local and global air-sea heat balance. Turner ([S] 
Chapter 8) has discussed the o~nographical impli- 
cations of layered systems. Furthermore, it has recently 
been shown experimentally that lateral heating, along 
with other lateral driving mechanisms, lead to situ- 
ations in double diffusive phenomena where both 
diffusive and salt finger type instabilities coexist [9]. 

The formation of a layered flow of a stably stratified 
fluid contained in a narrow slot with steadily applied 
lateral temperature gradient has been previously 
studied by Blumsack [lo], Thorpe et ai. [ 1 I], and Hart 
[12,13] using various linearized stability approaches. 
Experiments on the formation, evolution, and break- 
down of these layered systems have also been reported 
by the above using heat/salt and heat/sugar systems. 
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Similar layered systems form when a stably stratified 
solution is exposed to a suddenly applied lateral 
temperature gradient. This time dependent problem 
has been previously studied experimentally [14] and 
using numerical simulation [ 15, 161. 

In the following section we write down the differential 
equations and boundary conditions to be solved where 
the fluid motion is assumed to be two-dimensional, 
based on previous investigations of the problem 
[lo-141. Our approach has been to deal with the non- 
linear form of the governing equations using explicit 
finite difference techniques. Our solution algorithm, 
which employs a conservative difference form of the 
stream function, vorticity, and energy equations, is out- 
lined in Section 3. Convection in an initially quiescent 
fluid is instigated through the input of a disturbance 
in the fluid vorticity field. This approach has been used 
by others on other fluid stability problems. For 
example, Samuels and Churchill [ 171 studied the onset 
of convection in a two-dimensional enclosure heated 
from below. More recently, Chen [16] used a similar 
approach to investigate the stability of the wide gap 
problem with suddenly applied lateral temperature 
gradient as mentioned above. 

In Section 4 we compare the results of our numerical 
simulation with an experiment reported by Hart [ 131 
using a heat/sugar system. Also, the stability limits of 
heat/salt systems calculated by the finite difference 
approach are compared with the predictions of linear 
theory [ll, 121 and laboratory experiments [ll]. 
Finally, in Section 5 we discuss the advantages and 
limitations of this numerical approach. 

2. GOVERNING EQUATIONS 

A schematic diagram of a section of the slot is shown 
in Fig. 1. The region has slot width L and height H 
where the expected fluid motion is assumed periodic 
over the distance H. The region aspect ratio (H/L) is 
selected so that H is some integer multiple of the 
expected layer height, h. The side walls are impermeable 
to S. The left vertical wall is isothermal at temperature 
To ; the right wall is maintained at T, + AT. The solution 
contained between the walls is assumed incompressible 
with solute concentration S such that its state equation 
is given by 

P = P0t-l-x(7-T,)+B(S-So)l (1) 

P 

FIG. 1. Schematic diagram of a section of a tall 
narrow slot containing a linearly stratified solution. 

where 

1 aP c(= -__ 
PO aT so 

,=9 
p. as T,, 

(2) 

are the coefficients of expansion for heat and solute. 
The subscript 0 denotes a reference state. 

If the fluid motion is restricted to two dimensions 
in the x, y plane with horizontal and vertical velocities 
w, u, and if the usual Boussinesque approximation is 
applied while compressibility effects and viscous .dissi- 
pation are neglected, then the governing equations for 
laminar flow are : 

Vorticity Transport: 

Conservation of Energy: 

; = J,,(T, $)+DrV’T 

Conservation of Solute: 

as 

(4) 

5 = J&T ICI)+ DsvZs 

Relation between Stream Function and Vorticity 

vz*= --o 

(5) 

(6) 

where w is the two-dimensional fluid vorticity de- 
fined by 

au a0 

“=&-ax 

(3) 

and the stream function, J/, has been introduced such 
that, 

a+ a* 
u= 3’ v=ax’ (8) 

v, Dr, Ds are the kinematic viscosity, thermal diffu- 
sivity, and solute diffusivity respectively. JXY is the 
Jacobian representation of the convection terms. 

With the boundary conditions on T shown in Fig. 1, 
and in the absence of fluid motion, the steady state 
temperature of the fluid due to conduction only is 

T(x) = T,+yx. (9) 

If the temperature of the fluid departs from the pure 
conduction case (that is, when layers form), it can be 
represented as 

T(x, Y, r) = T(x) + Tp (IO) 

where Tp is the temperature perturbation. Similarly, if 
the slot initially contains a linearly stratified salt solu- 
tion with specified initial stable gradient, 

e,=; = t 0 
(11) 

then upon formation of a layered system, the salt con- 
centration can be represented as 

uAT 
S = So+BLx+&(y-H)+S, (12) 
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where S,, is a perturbation quantity. Equation (12) is 
obtained through the requirement that ap/ax = 0 in 
the absence of layers. 

If we substitute equations (10) and (12) into equations 
(3)-(5), we arrive at the following set of equations in 
terms of flow and perturbation quantities 

where we have introduced dimensionless variables as 
follows : 

x ,y 1= - 
tDT 

L’ 
.v = u 

L’ 
f=- 

L2 

UL 
ii=---, 

VL 

DT 

1;=-.-.-, 
DT 

etc. 

In equations (13)-(U), Pr = v/DT is the fluid Prandtl 
number, Le = DT/Ds is the Lewis number, Ra = 
gabTL3/vDT and Rs = g/?&L4/vDs are the thermal 
and solute Rayleigh numbers where Rs c 0 is a stable 
solute stratification since f$o c 0 in equation (12) for 
solute concentration decreasing upward. In the follow- 
ing, we drop the overbar notation; all variables are 
dimensionless unless strfted otherwise. 

Just prior to layer fo~ation, the fluid in the slot is 
assumed to be quiescent with steady state conduction 
T and S profiles such that dpflk = 0 at any level. 
Therefore, for initial conditions, we use 

4% Y, 0) = 4% y, 0) = 0 
T&G Y, 0) = sptx, y, 0) = 0 I (17) 

Side boundary conditions consistent with Fig. 1 are: 

together with the no-slip condition. (We arbitrarily set 
t,@, y, t) = Oalong the no-slip side boundaries.) Finally, 
we assume that the solution is periodic over height B 
giving 

S&, 4 t) = S&X, H, t) 

T,(x, 0, t) = T,(x, H, t) 

o(x, 0, t) = w(x, H, t) 
(19) 

VW, 0, t) = ti(x, H, t) 

3. THE NUMERICAL SIMULATION 

The specific details of our finite difference scheme 
are described in detail elsewhere [IS]. The simulation 
of equations (13)~(15) used explicit forward time 
differencing. It is considered to be first order accurate 
in time and second order accurate in spatial co- 
ordinates. The convective terms, JXy were represented 

by the second order accurate and conservative equa- 
tions developed by Arakawa [19]. The Laplacian 
terms were represented by the usual five point operator. 
The source terms, aT,/ax, aS,Jax, @/ax, etc., were 
approximated using centered differences about each 
point. The upper and lower periodic boundary con- 
ditions were incorporated into the solution through 
suitable modification of the finite difference represen- 
tation of equations (13)~(15) written along the region 
boundary. Since all quantities on the right-hand sides 
of equations (13)-(U) were written at the previous 
time level, each equation at each grid point had only 
one unknown; thus, a straightforward marching tech- 
nique of solution was employed as follows: 

1. Initiate calculation with small random field of 
vorticity. 

2. Solve for corresponding stream function (equa- 
tion 6). This is accomplished using Hackney’s 
Fourier Analysis and Cyclic Reduction algorithm 

E20]* 
3. Calculate new internal grid point values of w 

(equation 13),~(equation 14),and Tfequation 15). 
4. Calculate side boundary values of w using extra- 

polation formulas suggested by Aziz and Hellums 

Pll. 
5. Calculate flow kinetic energy, etc. Increment time 

and return to step 2 or stop. 
Further comment on step one is necessary. In any 

mathematical treatment of a flow instability we assume 
that infinitesimal perturbations of all wave number 
exist initially and that the disturbance flow with the 
appropriate wave number will grow most rapidly and 
predominate the flow. numerically, the same approach 
may be used with two exceptions. First, the initial 
disturbance is no longer infinitesimal, but rather it is 
numerically small compared to the final flow field. For 
our layered convection flows, the initial disturbance 
kinetic energy is 5 to 10 orders of magnitude smalIer 
than the final flow kinetic energy at supercritical 
conditions. 

The second difference from the analytical approach 
is that the structure (i.e. wave number) of the initial 
disturbance must a priori be assumed in the numerical 
approach. Elder [22] has used trigonometric functions 
for the initial disturbance in a numerical study of roll 
~nvection in a stratified &id heated from below. 
Samuels and Churchill [17] used a localized dis- 
turbance. A less restrictive form for the initial dis- 
turbance is to use a spatially random field because it, 
on the average, tends to cancel itself out and not force 
the developing flow field to have any particular pre- 
determined characteristics. Chen’s [ 161 investigation 
of the stability of a stratified solute in a wide gap 
exposed to impulsive changes in wall temperature 
showed that the use of initial random fields of o, T, 
or S are all equivalent in producing the layered con- 
vection. In our investigation, we have arbitrarily chosen 
to initiate the disturbance flow with a random field of 
vorticity. 

Finally, we have monitored the growth or decay of 
the evolving flow by calculating the dimensionless 
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kinetic energy per unit depth as 

Equation (20) was evaluated using the trapezoid rule 
applied to an area integral. 

4. RESULTS 

Preliminary calculations were performed for the case 
of homogeneous (single component) free convection 
between two infinite isothermal vertical plates at differ- 
ent temperatures. The total steady state kinetic energy 
predicted from the numerical simulation using 9 x 9 
and 9 x 17 grids was found to be within I.6 per cent 
of the theoretically calculated value. Most subsequent 
calculations reported here are for 9 x 17 grids. 

We have performed numerical calculations for 
heat/salt (Le = 101) and heat/sugar (Le = 281) systems. 
Our numerical simulation, corresponding to super- 
critical heat/sugar layer formation reported by Hart 
[ 131, will be discussed below. 

Hart’s apparatus consisted of a I cm wide x 4Ocm 
high slot which for the case considered contained a 
linearly stratified sugar solution such that -Rs = 
2.6 x 107. He increased the side wall temperature 
difference very slowly (over a period of 4-5 h) up to 
the point where cell formation was evident, as indicated 
through a dye flow visualization technique. The wall 
temperature difference, in the case considered A7’= 
%S’C, was then held constant. For the purposes of our 
numerical simulation this corresponds to an initial 
supercritical thermal Rayleigh number, Ra, of 1.59 x 
10’. We set the region height at H = 157, which is 
three times the roll height predicted using the relations 
developed in [13) for incipient roll formation at 
(- Rs) = 2.6 x 10’. 

Figure 2 shows stream function contour maps, traced 
from computer generated contour maps, for four 
selected times during initial layer formation, growth, 
and merging. Initially, three sets of opposite rotating 
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FIG. 2. Stream function contour maps with N = 1.57, 
(- Rs) = 26 x lo', Ra = 1.59 x lo’, Le = 281, Pr = 6.7. In 
each case six-isovalues are sketched between the following 
Iimits: (a) -1.0 x IOm3 < $ -C 1.08 x 10m3, (b) -1.31 x 
10-l < I,+ < 1.28 x lo-‘, (c) - 1.18 < I,& < 6.71 x lo-‘, (d) 

-427 < & < 9.21 x lo-‘. 

layer systems form, consistent with the prediction of 
linear theory. Each system has a dimensionless layer 
height of approximately 052. The upper set is weaker 
than the others probably due to our selection of the 
wrong value of H for this set of supercritical solute 
and thermal Rayleigh numbers. By t = 0.161 counter- 
clockwise rotating layers dominate the opposite 
rotating ones. The strength of fluid rotation has also 
increased, as evidenced by increases in maximum 
stream function. This is, perhaps, more clearly depicted 
in Fig. 3, where the vertical velocity profile across the 
central height cell is plotted. In Fig. 3, we observe over 
an order of magnitude increase in maximum fluid 
velocity between t = 0.161 and t = 0.202. IJsing 

v~~~~ Vito 
Id t-0~161 f 

FIG. 3. Dimensionless verticat velocity profiles for a layer 
at supercritical conditions as listed in Fig. 2. 

L = 1 cm, DT = 15 x 10M3 cm’/s, we estimate the 
vertical velocities in the layer to range between 0 to 
@0005cm/s at f = 0.161 (18min) and from 0 to 
O.O2cm/s at t = 0.202 (2.2min). These numerically 
generated estimates bracket Hart’s estimate, based on 
visual observations, of velocities of the order of 
0001 cm/s during the initial stages of cell formation. 
By t = O-202 the original six rotating layers have been 
merged into 3 counterclockwise rotating ones due to 
the continuous input ofenergy in excess of that required 
to maintain the original system. This compares favor- 
ably with the physical observation of initial layer 
merging at a nondimensional time of between 0.18 and 
0.27 as read from Hart’s Fig. 7. 

The numerical simulation may be used to assess the 
limits of stability in terms of thermal and solute 
Rayleigh numbers for layer formation. This can be used 
as a comparison with previously advanced linear cal- 
culations. Figure 4 shows the dimensionless kinetic 
energy for supercritical, neutral, and sub~riti~l thermal 
Rayleigh number for a heat/salt system with (- Rs) = 
5 x 106, and R = 1. In each case, the initial starting 
perturbation on the vorticity field produced a dimen- 
sionless kinetic energy of lo-‘. This initial random 
perturbation rapidly decays with rapid oscillations. 
For the subcritical condition (Ra = 104), there is in- 
sufficient input of thermal energy to overcome the 
potential energy ofthe stable stratification; the solution 
rapidly becomes quiescent. For supercritical Rayleigh 
number (Ra = 5 x 104) the random field rapidly gives 
way to coherent layer formation at i E 0.06. Since 
there is excess energy input, the kinetic energy of the 
newly formed layers steadily increases, leading to 
eventual over-driving of the layers and merging, as 
discussed above. At critical conditions, there is just 
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FIG. 4. Dimensionless flow kinetic energy for sub- 
critical, neutral, and supercritical conditions with 

(-Rs)=5x106,H=1,~e=101. 

sufficient thermal energy input to maintain the layers 
against the stable stratification Vertical convection is 
balanced by opposing diffusion of solute; the kinetic 
energy remains constant once the layers have formed. 

In actual practice, it is difficult to select Ra for exactly 
zero kinetic energy growth. Therefore, we arbitrarily 
define the neutral condition, for a given height H, as 
that Ra which produces 

For a given solute Rayleigh number (- Rs), we must 
also iterate on the region height in order to determine 
the critical thermal Rayleigh number which would 
form in a tall slot. For fixed initial solute stratification, 

l Present work 
I [II] , Experiment01 

FIG. 5. Neutral stability curve for layer 
formation in heat/salt systems (Le = 101) 
compared with linear theories and pre- 

vious experiments. 

and hence (- Rs), that value of H which produces the 
smallest neutral Ra is judged to be the critical thermal 
Rayleigh number for layer formation. We have per- 
formed this calculation for three solute Rayleigh num- 
bers for a heat/salt system. The results are compared 
with the linear stability calculations of Thorpe et al. 
[ll], and Hart [12], along with THS’s experimental 
results in Fig. 5. Our predictions compare favorably 
with the ex~riment~ observations up to (- Rs) = lo6 
and appear high at (- Rs) = 5 x 106. 

Ideally, we should be able to predict the layer height 
from our calculations. The dimensionless layer height 
should be given by 

h=iir 
n 

(22) 

where n is the number of layer pairs initially produced 
by the simulation and H, is the region height at neutral 
Ra. At (- Rs) = lo5 this calculation produces layer 
pair heights in agreement with observation. However, 
at higher ( - Rs) the smaller layer heights which should 
be produced according to previous observations ap- 
parently cannot be resolved by only seventeen grid 
points in the vertical. The finite difference simulation 
produces an aliased result where the kinetic energy 
goes into larger wave length cells, This is probably the 
reason for the larger than expected critical Ra obtained 
at(-Rs)=Sx106. 

5. CONCLUSIONS 

Based on our numerical experiments, we have shown 
that the essential features of convective layer formation 
and growth in a laterally heated stratified fluid may 
be simulated using simple finite difference techniques. 
Our simulation indicates that the kinetic energy of 
layers formed at supercritical conditions continuously 
increases until viscous interaction leads to the merging 
of adjacent layers. This picture is in general agreement 
with Hart’s [ 131 observations based on his experiments. 

We have also investigated the use of finite difference 
techniques in the study of the onset of flow instability. 
We have found that a neutral stability curve may be 
constructed through numerical simulation of the full, 
nonlinear set of governing equations. However, the 
problem of disturbance wavelength selection, in par- 
ticular at large solute Rayleigh numbers, remains. This 
problem would not occur in a vertical slot of finite 
height since the presence of slot top and bottom would 
determine the number of rolls formed at supercritical 
conditions. However, in attempting to simulate a very 
tall slot, or one of infinite height, the selection of a 
height, H, over which the flow is assumed to be periodic 
is necessary; dictated by reasons of economy of com- 
puter storage. This height, H, must be varied by trial 
and error until one which is an exact integer multiple 
of the roll height occurring for fixed Ra, and Rs, is 
obtained. Once the “correct” height, H, is obtained, its 
value may be checked by rerunning the calculation at 
2H. If n rolls of height h were produced using region 
height H, then 2n rolls of height h must be produced 
when using region height 2H. 
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At large solute Rayleigh numbers the rolls produced 
have small height, h, and the behavior of the numerical 
solution becomes very sensitive to small variations 
in H. Due to the use of a finite grid, a&sing errors 
tend to shift the energy which would normally go into 

the growth of short wave components of the solution 
into a long wavelength solution. 
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EXPERIENCES NUMERIQUES SUR L’APPARITION DE LA CONVECTION EN COUCHE 
DANS UNE CAVITE ETROlTE CONTENANT UN FLUIDE STRATIFIE STABLE 

l&urn&-On pr&.ente des experiences numeriques sur la formation initiale le development et la 
dispersion de couches convectives dans une solution stratifike en densitt contenue dam une cavite broite 
sur laquelle est applique un gradient la&al de temperature constant. Dans des conditions supercritiques, 
l’tnergie cindtique des couches une fois form& croit uniforrnement jusqu’a ce que l’interaction visqueuse 
conduise a la fusion Cventuelle de couches adjacentes. 

La stabilite de la formation de la couche initiale est etudi&e. Le nombre de Rayleigh thermique critique 
pour les conditions neutres determine par des experiences numkiques est en bon accord avec les rtsultats 

anttrieurs d’analyse lintaire et exptrimentaux. 

~~MERIS~HE EXPERIME~E UBER DEN ANFANG voN 
“GESCHICHTBTE~ KO~EKTION IN EINER SCHMALEN NUT, 

DIE EIN STABIL GESCHICHTETES FLUID ENTHALT 

Zusammenfassong-Es wird von numerischen Experimenten berichtet tiber Anfangsformation, Anwachsen 
und Verschmelzen von konvektiven Schichten in einer je nach Dichte des gelbsten Stoffes geschichteten 
Lbsung, die in einem engen Spalt mit stetig aufgebrachtem seitlichen Temperaturgradienten enthalten 
ist. Bei tiberkritischen Bedingungen wachst die kinetische Energie der einmal gebildeten Schichten stetig 
an, his viskose Wechselwirkungen schlieBlich zum Verschmelzen der benachbarten Schichten Whren. 

Die Stabilitat der anfinglichen Schichtenformation wurde untersucht. Die kritische thermische 
Rayteigh-Zahl fur neutrale Bedingungen wurde durch numerische Experimente in guter Ubereinstimmung 

mit vorhergehender linearer Analyse und experimentellen Ergebnissen bestimmt. 
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YWCJIEHHbIE 3KCi-IEPHMEHTbI l-IO B03HMKHOBEHWO CJIOHnOti KOHBEKqWM 
B Y3KOM Il&JIEBOM KAHAJIE, COAEPXALQEM YCTO@IkiBO 

CTPATIIIWiLJtiPOBAHHYIO XGiAKOCXb 

AHtIOTal@fI - &lUCbIBa~TCR YHCJleHHbIe 3KCllepHMeHTb1 II0 B03HRICHOBeHAH), pOCTy Ii CIIHIIHHIO 

KOH~KT~BHblX CJIOeB B CTpaT~~~Un~~H~OM El0 WIOTHOCTW paCTBOf& COZiepXaweMcR B Y3KOM 

~ene~M KaHWe C n~TO~HH~M 60KOBbIM rpa~~eHTOM TeMIIepaTypb1. 3 3aKp~Tn~~Ko~ obnaCTE% 

KRHeTmecKax xieprm o6pa3osaawuxca cnoes ~~CTORWHO yBenntinsaerca 80 Tex nop, nova Bx3KOe 

B3anMOAekTBHe He l=fpnBeXeT K BOSMOX(HOMY CnHIIHliM COCeJlHHX CSIOeB. 

kiCCJIeA)‘eTCSI YCTOhiBOCTb HaWiJlbHO~O 06pa30BaHns CJIOeB. KpHTnWCKOe TetUIOBOe YUCJIO 

PeJIeR AJIfl HeihpaJlbHbIX )‘CJIOBiiltsr OIIp‘ZneJISTJIOCb C IIOMOIUbH) YACJIeHHbIX 3KClTepHMeHTOB B 6JlH3KOM 

COOTBeTCTBWA C paHee llpOn3BO~HMbIM JIUHetiHbIM BHaNf30M H paHeC llOJQ”feHHbIMH 3KCIlej%iMeH- 

TaJIbHhIMA AaHHbIMEi. 


